Skip to main content

Advertisement

Log in

Plio-Pleistocene sedimentary record from the Northwind Ridge: new insights into paleoclimatic evolution of the western Arctic Ocean for the last 5 Ma

  • Original Paper
  • Published:
arktos

Abstract

Sediment core HLY0503-03JPC from the top of the Northwind Ridge provides the first confirmed Plio-Pleistocene record from the western Arctic Ocean, with calcareous microfossils uniquely preserved to ca. 5 Ma. Results are compared to nearby core P1-93AR-P23 from the ridge slope, which was previously used to reconstruct early Quaternary sea-ice conditions in the region (Polyak et al. in Quat Sci Rev 79:145–156, 2013), and is now re-dated to at least the late Pliocene. Ages were estimated primarily from strontium isotope stratigraphy on benthic foraminifers. Based on multiple physical, paleomagnetic, elemental geochemical, and paleobiological (foraminifers) proxies, we identify three major stratigraphic divisions (Units 1, 2a, and 2b) roughly representing upper to middle (“glacial”) Quaternary, lower Quaternary to Pliocene, and lower Pliocene to possibly upper Miocene (undated). Benthic foraminiferal assemblages were utilized to evaluate paleo-sea-ice conditions, while other proxies were used to interpret paleocirculation and sediment transport processes. Early Quaternary and older sediments indicate diminutive effect from glaciations, reduced sea-ice conditions, and a periodic strong current impact on the ridge top, possibly due to an enhanced Atlantic water flow. Ages derived from the first foraminiferal tests appearing at ca. 5 Ma likely indicate a redeposition pulse that we attribute to the onset of Pacific water throughflow via the Bering Strait. A large hiatus above this level in JPC3 spans most of the Pliocene. The Unit 2a/1 boundary, estimated to ca. 0.8 Ma, is marked by an abrupt faunal and sedimentary change, which is consistent with the major climatic shift that occurred during this time (Mid-Pleistocene Transition). Unit 1 exhibits a strong control from glacial cyclicity, with a progressive expansion of the Laurentide Ice Sheet primarily affecting the study region, and mostly perennial sea-ice conditions. Overall results suggest that the Pliocene and early Pleistocene may provide relevant paleoclimatic analogs for the rapidly changing Arctic environments of today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Research data for this article is available at https://doi.pangaea.de/10.1594/PANGAEA.892926.

References

  1. Stroeve JC, Serreze MC, Holland MM et al (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Change 110:1005–1027. https://doi.org/10.1007/s10584-011-0101-1

    Article  Google Scholar 

  2. Verhoeven K, Louwye S, Eiríksson J, De Schepper S (2011) A new age model for the Pliocene–Pleistocene Tjörnes section on Iceland: its implication for the timing of North Atlantic–Pacific palaeoceanographic pathways. Palaeogeogr Palaeoclimatol Palaeoecol 309:33–52. https://doi.org/10.1016/j.palaeo.2011.04.001

    Article  Google Scholar 

  3. Gladenkov a Y, Oleinik AE, Marincovich L, Barinov KB (2002) A refined age for the earlier opening of Bering Strait. Paleogeogr Paleclimatol Paleoecol 183:321–328

    Article  Google Scholar 

  4. Gladenkov AY (2006) The Cenozoic diatom zonation and its significance for stratigraphic correlations in the North Pacific. Paleontol J 40:S571–S583. https://doi.org/10.1134/S0031030106110049

    Article  Google Scholar 

  5. Hodell DA, Channeil JET, Curtis JH et al (2008) Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (∼640 ka)? Paleoceanography 23:1–16. https://doi.org/10.1029/2008PA001591

    Article  Google Scholar 

  6. Polyak L, Bischof J, Ortiz JD et al (2009) Late Quaternary stratigraphy and sedimentation patterns in the western Arctic Ocean. Glob Planet Change 68:5–17. https://doi.org/10.1016/j.gloplacha.2009.03.014

    Article  Google Scholar 

  7. Polyak L, Alley RB, Andrews JT et al (2010) History of sea ice in the Arctic. Quat Sci Rev 29:1757–1778. https://doi.org/10.1016/J.QUASCIREV.2010.02.010

    Article  Google Scholar 

  8. Polyak L, Jakobsson M (2011) Quaternary sedimentation in the Arctic Ocean: recent advances and further challenges. Oceanography 24:52–64. https://doi.org/10.1016/0079-6611(65)90042-X

    Article  Google Scholar 

  9. Xuan C, Channell JET, Polyak L, Darby DA (2012) Paleomagnetism of Quaternary sediments from Lomonosov Ridge and Yermak Plateau: implications for age models in the Arctic Ocean. Quat Sci Rev 32:48–63. https://doi.org/10.1016/J.QUASCIREV.2011.11.015

    Article  Google Scholar 

  10. Jakobsson M, Lovlie R, Al-Hanbali H et al (2000) Manganese and color cycles in Arctic Ocean sediments constrain Pleistocene chronology. Geology 28:23–26. https://doi.org/10.1130/0091-7613(2000)28%3C23:MACCIA%3E2.0.CO;2

    Article  Google Scholar 

  11. O’Regan M, King J, Backman J et al (2008) Constraints on the Pleistocene chronology of sediments from the Lomonosov Ridge. Paleoceanography 23:1–18. https://doi.org/10.1029/2007PA001551

    Article  Google Scholar 

  12. Adler RE, Polyak L, Ortiz JD et al (2009) Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge. Glob Planet Change 68:18–29. https://doi.org/10.1016/j.gloplacha.2009.03.026

    Article  Google Scholar 

  13. Stein R, Matthiessen J, Niessen F et al (2010) Towards a better (litho-) stratigraphy and reconstruction of quaternary paleoenvironment in the Amerasian basin (arctic ocean). Polarforschung 79:97–121. https://doi.org/10.2204/iodp.proc.303306.2006

    Article  Google Scholar 

  14. Clark DL, Whitman RR, Morgan KA, Mackey SD (1980) Stratigraphy and glacial-marine sediments of the Amerasian Basin, central Arctic Ocean. Geological Society of America, Boulder

    Book  Google Scholar 

  15. Nowaczyk NR, Frederichs TW, Kassens H et al (2001) Sedimentation rates in the Makarov Basin, central Arctic Ocean: a paleomagnetic and rock magnetic approach. Paleoceanography 16:368–389. https://doi.org/10.1029/2000PA000521

    Article  Google Scholar 

  16. Channell JET, Xuan C (2009) Self-reversal and apparent magnetic excursions in Arctic sediments. Earth Planet Sci Lett 284:124–131. https://doi.org/10.1016/j.epsl.2009.04.020

    Article  Google Scholar 

  17. Xuan C, Channell JET (2010) Origin of apparent magnetic excursions in deep-sea sediments from Mendeleev-Alpha Ridge, Arctic Ocean. Geochem Geophys Geosyst. https://doi.org/10.1029/2009GC002879

    Article  Google Scholar 

  18. Spielhagen RF, Baumann KH, Erlenkeuser H et al (2004) Arctic Ocean deep-sea record of northern Eurasian ice sheet history. Quat Sci Rev 23:1455–1483. https://doi.org/10.1016/j.quascirev.2003.12.015

    Article  Google Scholar 

  19. Polyak L, Best KM, Crawford KA et al (2013) Quaternary history of sea ice in the western Arctic Ocean based on foraminifera. Quat Sci Rev 79:145–156. https://doi.org/10.1016/j.quascirev.2012.12.018

    Article  Google Scholar 

  20. McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170. https://doi.org/10.1086/319243

    Article  Google Scholar 

  21. McArthur JM, Howarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: The geologic time scale, pp 127–144. https://doi.org/10.1016/B978-0-444-59425-9.00007-X

  22. Eidvin T, Ullmann CV, Dybkjær K et al (2014) Discrepancy between Sr isotope and biostratigraphic datings of the upper middle and upper Miocene successions (Eastern North Sea Basin, Denmark). Palaeogeogr Palaeoclimatol Palaeoecol 411:267–280. https://doi.org/10.1016/j.palaeo.2014.07.005

    Article  Google Scholar 

  23. McNeil DH, Miller KG (1990) High-latitude application of 87Sr/86Sr: correlation of Nuwok beds on North Slope, Alaska, to standard Oligocene chronostratigraphy. Geology 18:415–418. https://doi.org/10.1130/0091-7613(1990)018<0415:HLAOSS>2.3.CO;2

  24. McNeil DH, Duk-Rodkin A, Dixon J et al (2001) Sequence stratigraphy, biotic change, 87Sr/86Sr record, paleoclimatic history, and sedimentation rate change across a regional late Cenozoic unconformity in Arctic Canada. Can J Earth Sci 38:309–331. https://doi.org/10.1139/cjes-38-2-309

    Article  Google Scholar 

  25. Gusev EA, Kuznetsov AB, Taldenkova EE et al (2017) Past sedimentation rates and environments of the Mendeleev Rise inferred from Sr isotope and δ18O chemostratigraphy of its Late Cenozoic sediments. Dokl Earth Sci 473:354–358. https://doi.org/10.1134/S1028334X17030242

    Article  Google Scholar 

  26. Taldenkova EE, Nikolaev SD, Stepanova AY et al (2016) Neopleistocene stratigraphy and paleogeography of the Amerasian Arctic Ocean Basin inferred from lithological and paleontological data. Geografiya 6:3–17

    Google Scholar 

  27. Winter BL, Johnson CM, Clark DL (1997) Strontium, neodymium, and lead isotope variations of authigenic and silicate sediment components from the Late Cenozoic Arctic Ocean: implications for sediment provenance and the source of trace metals in seawater. Geochim Cosmochim Acta 61:4181–4200. https://doi.org/10.1016/S0016-7037(97)00215-9

    Article  Google Scholar 

  28. Rudels B, Jones EP, Anderson LG, Kattner G (2013) On the intermediate depth waters of the Arctic Ocean. In: Johannessen OM, Muench RD, Overland JE (eds) The polar oceans and their role in shaping the global environment. https://doi.org/10.1029/GM085p0033

  29. Jones EP (2001) Circulation in the Arctic Ocean. Polar Res 20:139–146. https://doi.org/10.1111/j.1751-8369.2001.tb00049.x

    Article  Google Scholar 

  30. Rudels B (2009) Arctic Ocean circulation. Encycl. Ocean Sci. Elsevier, Amsterdam, pp 211–225

    Google Scholar 

  31. Lazar KB, Polyak L (2016) Pleistocene benthic foraminifers in the Arctic Ocean: implications for sea-ice and circulation history. Mar Micropaleontol 126:19–30. https://doi.org/10.1016/j.marmicro.2016.04.004

    Article  Google Scholar 

  32. Jakobsson M, Nilsson J, O’Regan M et al (2010) An Arctic Ocean ice shelf during MIS 6 constrained by new geophysical and geological data. Quat Sci Rev 29:3505–3517. https://doi.org/10.1016/j.quascirev.2010.03.015

    Article  Google Scholar 

  33. Darby DA, Polyak L, Jakobsson M (2009) The 2005 HOTRAX Expedition to the Arctic Ocean. Glob Planet Change 68:1–4. https://doi.org/10.1016/j.gloplacha.2009.04.005

    Article  Google Scholar 

  34. Jakobsson M, Polyak L, Edwards M et al (2008) Glacial geomorphology of the Central Arctic Ocean: the Chukchi Borderland and the Lomonosov Ridge. Earth Surf Process Landf 33:526–545. https://doi.org/10.1002/esp

    Article  Google Scholar 

  35. Rudels B (2015) Arctic Ocean circulation, processes and water masses: a description of observations and ideas with focus on the period prior to the International Polar Year 2007–2009. Prog Oceanogr 132:22–67. https://doi.org/10.1016/j.pocean.2013.11.006

    Article  Google Scholar 

  36. Müllen MW, McNeil DH (1995) Biostratigraphic and paleoclimatic significance of a new Pliocene foraminiferal fauna from the central Arctic Ocean. Mar Micropaleontol 26:273–280. https://doi.org/10.1016/0377-8398(96)87758-9

    Article  Google Scholar 

  37. Sellén E, O’Regan M, Jakobsson M (2010) Spatial and temporal Arctic Ocean depositional regimes: a key to the evolution of ice drift and current patterns. Quat Sci Rev 29:3644–3664. https://doi.org/10.1016/j.quascirev.2010.06.005

    Article  Google Scholar 

  38. Dong L, Liu Y, Shi X et al (2017) Sedimentary record from the Canada Basin, Arctic Ocean: implications for late to middle Pleistocene glacial history. Clim Past 13:511–531. https://doi.org/10.5194/cp-13-511-2017

    Article  Google Scholar 

  39. Wang R, Polyak L, Xiao W et al (2018) Late–Middle Quaternary lithostratigraphy and sedimentation patterns on the Alpha Ridge, central Arctic Ocean: implications for Arctic climate variability on orbital time scales. Quat Sci Rev 181:93–108. https://doi.org/10.1016/j.quascirev.2017.12.006

    Article  Google Scholar 

  40. Thomas RG, Guyodo Y, Channell JET (2003) U channel track for susceptibility measurements. Geochem Geophys Geosyst 4:1–6. https://doi.org/10.1029/2002GC000454

    Article  Google Scholar 

  41. Lagoe MB (1977) Recent benthic foraminifera from the central Arctic Ocean. J Foraminifera Res 7(2):106–129. https://doi.org/10.2113/gsjfr.7.2.106

    Article  Google Scholar 

  42. Scott DB, Vilks G (1991) Benthic foraminifera in the surface sediments of the deep-sea arctic ocean. J Foraminifera Res 21:20–38. https://doi.org/10.2113/gsjfr.21.1.20

    Article  Google Scholar 

  43. Green K (1960) Ecology of some Arctic foraminifera. Micropaleontology 6:57–78

    Article  Google Scholar 

  44. Scott DB, Schell T, Rochon A, Blasco S (2008) Benthic foraminifera in the surface sediments of the Beaufort Shelf and slope, Beaufort Sea, Canada: applications and implications for past sea-ice conditions. J Mar Syst 74:840–863. https://doi.org/10.1016/j.jmarsys.2008.01.008

    Article  Google Scholar 

  45. Cronin TM, Polyak L, Reed D et al (2013) A 600-ka Arctic sea-ice record from Mendeleev Ridge based on ostracodes. Quat Sci Rev 79:157–167. https://doi.org/10.1016/j.quascirev.2012.12.010

    Article  Google Scholar 

  46. Kuznetsov AB, Semikhatov MA, Gorokhov IM (2012) The Sr isotope composition of the world ocean, marginal and inland seas: implications for the Sr isotope stratigraphy. Stratigr Geol Correl 20:501–515. https://doi.org/10.1134/S0869593812060044

    Article  Google Scholar 

  47. Polyak L, Curry WB, Darby DA et al (2004) Contrasting glacial/interglacial regimes in the western Arctic Ocean as exemplified by a sedimentary record from the Mendeleev Ridge. Palaeogeogr Palaeoclimatol Palaeoecol 203:73–93. https://doi.org/10.1016/S0031-0182(03)00661-8

    Article  Google Scholar 

  48. Stein R (2008) Arctic Ocean sediments: processes, proxies, and paleoenvironment: processes, proxies, and paleoenvironment. Developments in marine geology, vol 2. Elsevier, Amsterdam

    Google Scholar 

  49. Jakobsson M, Løvlie R, Arnold EM et al (2001) Pleistocene stratigraphy and paleoenvironmental variation from Lomonosov Ridge sediments, central Arctic Ocean. Glob Planet Change 31:1–22. https://doi.org/10.1016/S0921-8181(01)00110-2

    Article  Google Scholar 

  50. Kaufman DS, Polyak L, Adler R et al (2008) Dating late Quaternary planktonic foraminifer Neogloboquadrina pachyderma from the Arctic Ocean using amino acid racemization. Paleoceanography 23:1–11. https://doi.org/10.1029/2008PA001618

    Article  Google Scholar 

  51. Lisiecki LE, Raymo ME (2005) A Pliocene–Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20:1–17. https://doi.org/10.1029/2004PA001071

    Article  Google Scholar 

  52. Clark PU, Archer D, Pollard D et al (2006) The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat Sci Rev 25:3150–3184. https://doi.org/10.1016/j.quascirev.2006.07.008

    Article  Google Scholar 

  53. Gibbard PL, Head MJ, Walker MJC, Stratigraphy TS on Q (2010) Formal ratification of the Quaternary System/Period and the Pleistocene Series/Epoch with a base at 2.58 Ma. J Quat Sci 25:96–102. https://doi.org/10.1002/jqs

    Article  Google Scholar 

  54. Matthiessen J, Niessen F, Stein R, David Naafs B (2010) Pleistocene glacial marine sedimentary environments at the eastern Mendeleev Ridge, Arctic Ocean. Polarforschung 79:123–137

    Google Scholar 

  55. Löwemark L, O’Regan M, Hanebuth TJJ, Jakobsson M (2012) Late Quaternary spatial and temporal variability in Arctic deep-sea bioturbation and its relation to Mn cycles. Palaeogeogr Palaeoclimatol Palaeoecol 365–366:192–208. https://doi.org/10.1016/J.PALAEO.2012.09.028

    Article  Google Scholar 

  56. Darby DA, Ortiz J, Polyak L et al (2009) The role of currents and sea ice in both slowly deposited central Arctic and rapidly deposited Chukchi–Alaskan margin sediments. Glob Planet Change 68:58–72. https://doi.org/10.1016/J.GLOPLACHA.2009.02.007

    Article  Google Scholar 

  57. Darby DA (1971) Carbonate cycles and clay mineralogy of Arctic Ocean sediment cores. PhD Thesis, Univ Wisconsin-Madison 43

  58. Bischof J, Clark DL, Vincent JS (1996) Origin of ice-rafted debris: Pleistocene paleoceanography in the western Arctic Ocean. Paleoceanography 11:743–756. https://doi.org/10.1029/96PA02557

    Article  Google Scholar 

  59. Phillips RL, Grantz A (2001) Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments: implications for the configuration of late Quaternary oceanic and atmospheric circulation in the Arctic. Mar Geol 172:91–115. https://doi.org/10.1016/S0025-3227(00)00101-8

    Article  Google Scholar 

  60. Hanslik D, Löwemark L, Jakobsson M (2013) Biogenic and detrital-rich intervals in central Arctic Ocean cores identified using X-ray fluorescence scanning. Polar Res. https://doi.org/10.3402/polar.v32i0.18386

    Article  Google Scholar 

  61. Löwemark L, Jakobsson M, Mörth M, Backman J (2008) Arctic Ocean manganese contents and sediment colour cycles. Polar Res 27:105–113. https://doi.org/10.1111/j.1751-8369.2008.00055.x

    Article  Google Scholar 

  62. März C, Stratmann A, Matthiessen J et al (2011) Manganese-rich brown layers in Arctic Ocean sediments: composition, formation mechanisms, and diagenetic overprint. Geochim Cosmochim Acta 75:7668–7687. https://doi.org/10.1016/J.GCA.2011.09.046

    Article  Google Scholar 

  63. Steuerwald BA, Clark DL, Andrew JA (1968) Magnetic stratigraphy and faunal patterns in Arctic Ocean sediments. Earth Planet Sci Lett 5:79–85

    Article  Google Scholar 

  64. Clark DL (1970) Magnetic reversals and sedimentation rates in the Arctic Ocean. GSA Bull 81:3129–3134. https://doi.org/10.1130/0016-7606(1970)81[3129:MRASRI]2.0.CO;2

  65. Wollenburg J, Kuhnt W (2000) The response of benthic foraminifers to carbon flux and primary production in the Arctic Ocean. Mar Micropaleontol 40:189–231. https://doi.org/10.1016/S0377-8398(00)00039-6

    Article  Google Scholar 

  66. Berger W, Diester-Haass L (1988) Paleoproductivity: the benthic/planktonic ratio in foraminifera as a productivity index. Mar Geol 81:15–25. https://doi.org/10.1016/0025-3227(88)90014-X

    Article  Google Scholar 

  67. van der Zwaan G, Jorissen F, de Stigter H (1990) The depth dependency of planktonic/benthic foraminiferal ratios: constraints and applications. Mar Geol 95:1–16. https://doi.org/10.1016/0025-3227(90)90016-D

    Article  Google Scholar 

  68. Herman Y (1973) Bolivina arctica, a new benthonic foraminifera from Arctic Ocean sediments. J Foraminifer Res 3:137–141

    Article  Google Scholar 

  69. Stein R, Macdonald RW (2004) Organic carbon budget: Arctic Ocean vs. global ocean. In: Stein R, Macdonald RW (eds) The organic carbon cycle in the Arctic Ocean. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  70. Gooday AJ (1988) A response by benthic foraminifera to the deposition of phytodetritus in the deep sea. Nature 332:70–73

    Article  Google Scholar 

  71. Smart CW, King SC, Gooday AJ et al (1994) A benthic foraminiferal proxy of pulsed organic matter paleofluxes. Mar Micropaleontol 23:89–99. https://doi.org/10.1016/0377-8398(94)90002-7

    Article  Google Scholar 

  72. Thomas E, Booth L, Maslin M, Shackleton NJ (1995) Northeastern Atlantic benthic foraminifera and implications of productivity during the last 40,000 years. Paleoceanography 10:545–562. https://doi.org/10.1029/94PA03056

    Article  Google Scholar 

  73. Gooday AJ (1993) Deep-sea benthic foraminiferal species which exploit phytodetritus: characteristic features and controls on distribution. Mar Micropaleontol 22:187–205. https://doi.org/10.1016/0377-8398(93)90043-W

    Article  Google Scholar 

  74. Wollenburg JE, Mackensen A (1998) Living benthic foraminifers from the central Arctic Ocean: faunal composition, standing stock and diversity. Mar Micropaleontol 34:153–185. https://doi.org/10.1016/S0377-8398(98)00007-3

    Article  Google Scholar 

  75. Lagoe MB (1979) Recent benthonic foraminiferal biofacies in the Arctic Ocean. Micropaleontology 25:214–224

    Article  Google Scholar 

  76. Polyak L (1990) General trends of benthic foraminiferal distribution in the Arctic Ocean. In: Arctic research: advances and prospects. Proceedings of the conference of Arctic and Nordic Countries on Coordination of Research in the Arctic, Leningrad, 1988, Moscow, Nauka, pp 211–213

  77. Ishman SE, Foley KM (1996) Modern benthic foraminifer distribution in the Amerasian Basin, Arctic Ocean. Micropaleontology 42:206–220

    Article  Google Scholar 

  78. McNeil DH (1997) New foraminifera from the Upper Cretaceous and Cenozoic of the Beaufort-Mackenzie basin of Arctic Canada. No 35 Cushman Found Foraminifer Res

  79. Melles M, Brigham-Grette J, Minyuk P et al (2011) The Lake El’gygytgyn scientific drilling project—conquering Arctic challenges through continental drilling. Sci Drill 11:29–40. https://doi.org/10.2204/iodp.sd.11.03.2011

    Article  Google Scholar 

  80. Backman J, Jakobsson M, Frank M et al (2008) Age model and core-seismic integration for the Cenozoic Arctic Coring Expedition sediments from the Lomonosov Ridge. Paleoceanography 23:1–15. https://doi.org/10.1029/2007PA001476

    Article  Google Scholar 

  81. Rohling EJ, Foster GL, Grant KM et al (2014) Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508:477–482. https://doi.org/10.1038/nature13230

    Article  Google Scholar 

  82. De Schepper S, Schreck M, Beck KM et al (2015) Early Pliocene onset of modern Nordic Seas circulation related to ocean gateway changes. Nat Commun 6:1–8. https://doi.org/10.1038/ncomms9659

    Article  Google Scholar 

  83. Hegewald A, Jokat W (2013) Tectonic and sedimentary structures in the northern Chukchi region, Arctic Ocean. J Geophys Res Solid Earth 118:3285–3296. https://doi.org/10.1002/jgrb.50282

    Article  Google Scholar 

  84. Hu A, Meehl GA, Otto-Bliesner BL et al (2010) Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes. Nat Geosci 3:118–121. https://doi.org/10.1038/ngeo729

    Article  Google Scholar 

  85. Zhang YG, Pagani M, Liu Z et al (2013) A 40-million-year history of atmospheric CO2. Philos Trans R Soc A 371:20130096. https://doi.org/10.1098/rsta.2013.0096

    Article  Google Scholar 

  86. Pagani M, Liu Z, Lariviere J, Ravelo AC (2010) High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat Geosci 3:27–30. https://doi.org/10.1038/ngeo724

    Article  Google Scholar 

  87. Martinez-Boti MA, Foster GL, Chalk TB et al (2015) Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518:49–54. https://doi.org/10.1038/nature14145

    Article  Google Scholar 

  88. Lariviere JP, Ravelo AC, Crimmins A et al (2012) Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature 486:97–100. https://doi.org/10.1038/nature11200

    Article  Google Scholar 

  89. de Wet GA, Castañeda IS, DeConto RM, Brigham-Grette J (2016) A high-resolution mid-Pleistocene temperature record from Arctic Lake El’gygytgyn: a 50 kyr super interglacial from MIS 33 to MIS 31? Earth Planet Sci Lett 436:56–63. https://doi.org/10.1016/J.EPSL.2015.12.021

    Article  Google Scholar 

  90. Knies J, Cabedo-Sanz P, Belt ST et al (2014) The emergence of modern sea ice cover in the Arctic Ocean. Nat Commun 5:1–7. https://doi.org/10.1038/ncomms6608

    Article  Google Scholar 

  91. Mcneil DH (1990) Tertiary marine events of the Beaufort-Mackenzie Basin and correlation of Oligocene to Pliocene marine outcrops in Arctic North America. Arctic 43:301–313. https://doi.org/10.14430/arctic1626

    Article  Google Scholar 

  92. Marincovich L Jr (2000) Central American paleogeography controlled Pliocene Arctic Ocean molluscan migrations. Geology 28:551–554. https://doi.org/10.1130/0091-7613(2000)28%3C551:CAPCPA%3E2.0.CO;2

    Article  Google Scholar 

  93. Marincovich L, Gladenkov AY (2001) New evidence for the age of Bering Strait. Quat Sci Rev 20:329–335. https://doi.org/10.1016/S0277-3791(00)00113-X

    Article  Google Scholar 

  94. Dausmann V, Frank M, Siebert C et al (2015) The evolution of climatically driven weathering inputs into the western Arctic Ocean since the late Miocene: radiogenic isotope evidence. Earth Planet Sci Lett 419:111–124. https://doi.org/10.1016/J.EPSL.2015.03.007

    Article  Google Scholar 

  95. Clark PU, Pollard D (1998) Origin of the middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography 13:1–9. https://doi.org/10.1029/97PA02660

    Article  Google Scholar 

  96. Roy M, Clark PU, Raisbeck GM, Yiou F (2004) Geochemical constraints on the regolith hypothesis for the middle Pleistocene transition. Earth Planet Sci Lett 227:281–296. https://doi.org/10.1016/J.EPSL.2004.09.001

    Article  Google Scholar 

  97. Jansen JHF, Kuijpers A, Troelstra SR (1986) A mid-Brunhes climatic event: long-term changes in global atmosphere and ocean circulation. Science 232:619–622. https://doi.org/10.1126/science.232.4750.619

    Article  Google Scholar 

  98. Wang P, Tian J, Cheng X et al (2004) Major Pleistocene stages in a carbon perspective: the South China Sea record and its global comparison. Paleoceanography 19:1–16. https://doi.org/10.1029/2003PA000991

    Article  Google Scholar 

  99. Jakobsson M, Nilsson J, Anderson L et al (2016) Evidence for an ice shelf covering the central Arctic Ocean during the penultimate glaciation. Nat Commun 7:1–10. https://doi.org/10.1038/ncomms10365

    Article  Google Scholar 

  100. Polyakov IV, Pnyushkov AV, Alkire MB et al (2017) Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356:285–291. https://doi.org/10.1126/science.aai8204

    Article  Google Scholar 

  101. Lidmar-Bergström K (1997) A long-term perspective on glacial erosion. Earth Surf Process Landf 22:297–306. https://doi.org/10.1002/(SICI)1096-9837(199703)22:3<297::AID-ESP758>3.0.CO;2-R

Download references

Acknowledgements

We cordially thank two anonymous reviewers for their constructive comments for improvement of this manuscript. This research was supported by the US National Science Foundation award ARC-1304755 to LP. We thank James Channell (University of Florida), Guillaume St. Onge (ISMER), Jacques Labrie (ISMER), and Brendan Reilly (Oregon State University) for help with paleomagnetic measurements, and A. Lingwall (University of Minnesota Duluth) for assistance with XRF measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey R. Dipre.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dipre, G.R., Polyak, L., Kuznetsov, A.B. et al. Plio-Pleistocene sedimentary record from the Northwind Ridge: new insights into paleoclimatic evolution of the western Arctic Ocean for the last 5 Ma. Arktos 4, 1–23 (2018). https://doi.org/10.1007/s41063-018-0054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41063-018-0054-y

Keywords

Navigation